首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   3篇
  国内免费   1篇
化学   107篇
力学   5篇
综合类   1篇
数学   1篇
物理学   39篇
  2023年   2篇
  2022年   3篇
  2021年   9篇
  2020年   9篇
  2019年   3篇
  2018年   4篇
  2017年   8篇
  2016年   3篇
  2015年   8篇
  2014年   7篇
  2013年   7篇
  2012年   9篇
  2011年   10篇
  2010年   9篇
  2009年   11篇
  2008年   9篇
  2007年   3篇
  2006年   4篇
  2005年   7篇
  2004年   6篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1980年   1篇
  1979年   1篇
排序方式: 共有153条查询结果,搜索用时 15 毫秒
1.
Modified pectin (MP) was reported to have increased bioactivities compared with the original one. However, traditional modification methods such as using an acidic solvent with heating are not only costly but causing severe pollution as well. In this study, manothermosonication (MTS) with a continuous-flow system was utilized to modify citrus pectin. The citrus pectin (5 g/L) treated by MTS (3.23 W/mL, 400 kPa, 45 °C) exhibited lower molecular weight (Mw, 248.17 kDa) and PDI (2.76). The pectin treated by MTS (400 KPa, 45 °C, 5 min) exhibited a narrower Mw distribution and lowered more Mw (48.8%) than the ultrasound(US)-treated (23.8%). Pectin degradation data fitted well to kinetic model of 1/Mwt −1/Mw0 = kt (45–65 °C). A lower activation energy of 13.33 kJ/mol was observed in the MTS treatment compared with the US-treated (16.38 kJ/mol). The MTS-treated pectin lowered the degree of methoxylation (DM), mol% of rhamnose and galacturonic acid (GalA) while increased mol% of galactose (Gal), xylose (Xyl), and arabinose (Ara). The 1H and 13C nuclear magnetic resonance showed that MTS could not alter the primary structures of citrus pectin. However, an elevated (Gal + Ara)/Rha and reduced GalA/(Rha + Ara + Gal + Xyl) molar ratios after MTS suggested that MTS resulted in more significant degradation on the main chains and less on the side chains of pectin, in agreement with the result of atomic force microscope. Moreover, the MTS-treated pectin exhibited a higher 1,1-diphenyl-2picryl hydrazyl radical scavenging capacity compared with original pectin.  相似文献   
2.
In the present study, high-performance liquid chromatography micro-fraction bioactive evaluation and high speed countercurrent chromatography were performed on screening, identification and isolation of antioxidants from Citrus peel. Three compounds were screened as antioxidants and tyrosinase inhibitors using 2,2′-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) radical cation scavenging assay and tyrosinase activity test, then they were identified as eriocitrin, narirutin and hesperidin. Moreover, the solvent system ethyl acetate-n-butanol-water (6:4:10, v/v/v) was used for separation of ethyl acetate extract of Citrus peel by high speed countercurrent chromatography. In total, 0.45 mg of eriocitrin with 87.10% purity, 2.04 mg of narirutin with 95.19% purity and 1.35 mg of hesperidin with 95.19% purity were obtained from 20 mg of ethyl acetate extract of Citrus peel in a single run and then each component was subjected to 2,2′-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) radical cation scavenging assay and tyrosinase inhibition assay. Eriocitrin showed great antioxidant activity (the half-maximum concentration: 3.65 µM) and tyrosinase inhibition activity (the half-maximum concentration: 115.67 µM), while narirutin and hesperidin exhibited moderate activity. Tyrosinase inhibition activity for eriocitrin in vitro was reported for the first time. Furthermore, molecular docking between eriocitrin and mushroom tyrosinase was also studied.  相似文献   
3.
Polymethoxyflavones were a unique class of natural and safe flavonoids containing two or more methoxy groups, which were also the most abundant edible part in Citrus peel. The optimum condition in the process of selective extraction of polymethoxylated flavones from Citrus peel by matrix solid-phase dispersion (MSPD) was as follows: SBA-15 as adsorbent, ethyl acetate as eluent, the mass ratio of adsorbent to sample 1:1, and the mixture of sample and adsorbent was ground for 3 min. Twelve antioxidants were successfully screened by micro-fractionation bioactivity evaluation assay, in which four of them were flavonoid glycosides, seven of them were polymethoxylated flavones, and one was phenylpropanoid. 1-sinapoly-β-D-glucopyranoside (1) was reported for the first time in Citrus peel. And antioxidant capacity of 1-sinapoly-β-D-glucopyranoside, 5, 7, 8, 3′, 4′, 5′-hexamethoxyflavone (6), hexamethoxyflavone (11), and 5, 6, 7, 4′-tetramethoxyflavone (7) were reported for the first time. Nobiletin (compound 8), 3, 5, 6, 7, 8, 3′, 4′-heptamethoxyflavone (9) and tangeretin (10) were isolated and purified by countercurrent chromatography combined with preparative liquid chromatography. Antioxidant activity evaluation indicated that the three isolated polymethoxylated flavones owned similar antioxidant activity. This study indicated that MSPD combined with micro-fractionation bioactive evaluation was efficient in screening bioactive compounds for rapid extraction and effective pinpointing bioactive substances in natural products.  相似文献   
4.
采用超高效液相色谱法同时测定脐橙中的橘红2号和苏丹红染料。样品经乙腈超声提取,氨基固相萃取小柱净化后,用Waters ACQUITY UPLC BEH C18色谱柱分离,以乙腈-水为流动相进行梯度洗脱,采用二极管阵列检测器检测,检测波长分别为478 nm和515 nm。5种染料的质量浓度在0.20~20 mg·L-1范围内呈线性,检出限(3S/N)在0.31~0.53μg·kg-1之间。加标回收率在87.8%~99.4%之间,测定值的相对标准偏差(n=5)在0.54%~3.1%之间。  相似文献   
5.
以废弃柑橘皮渣为碳源,通过ZnCl2活化后高温煅烧制备了纳米多孔碳材料(NPC),将其作为吸附剂,建立了分散固相萃取净化、气相色谱法测定果蔬中有机磷农药残留的方法.扫描电子显微镜(SEM)、X射线衍射(XRD)、傅立叶红外光谱(FT-IR)、拉曼光谱及氮气吸附分析(BET)等表征显示,NPC是无定形的多孔碳材料,孔径大小为0~15 nm,比表面积和孔体积分别为1243 m2/g和1.28 cm3/g.以果蔬中14种有机磷类农药为分析对象,考察了吸附剂的用量和净化时间,并将NPC与商业化材料N-丙基乙二胺(PSA)、十八烷基硅胶键合相(C18)和石墨化碳黑(GCB)进行了对比.结果表明,NPC最佳使用量为0.01 g,净化时间只需2 min.NPC成本远低于C18、PSA和GCB,因具有丰富的孔道结构,NPC净化效果显著优于3种商业化材料.在最优条件下,14种有机磷农药在0.02~1.0 mg/L范围内的线性关系良好(R2>0.99),检出限(S/N=3)为0.63~5.30μg/kg.3个添加水平下的平均回收率为71.3%~114.7%,相对标准偏差(RSD)为0.9%~12.9%.本方法操作简便、快速、成本低,在果蔬样品前处理中具有广阔的应用前景.  相似文献   
6.
The medicinal potential and volatile composition of different parts of three cultivars of grapefruit (Citrus paradisi) were evaluated for their toxicity and anti-inflammatory activities. Fresh leaf and fruit peel were separately isolated by hydrodistillation for 4 h. The essential oils were subjected to GC/GC-MS analysis for chemical profile. Toxicity of the essential oils in mice were evaluated using Lorke’s method, while an anti-inflammatory assay was performed in a rat model using egg albumin-induced oedema. The oils obtained were light yellow in colour, and odour varied from strong citrus smell to mild. Percentage yield of fresh peel oil (0.34–0.57%) was greater than the fresh leaf oil yield (0.21–0.34%). D-limonene (86.70–89.90%) was the major compound identified in the leaf oil, while β-phellandrene (90.00–91.01%) dominated the peel oil. At a dosage level of 5000 mg/kg, none of the oils showed mortality in mice. An anti-inflammatory bioassay revealed that all the oils caused a significant (p < 0.05–0.01) reduction in oedema size when compared to the negative control group throughout the 5 h post induction assessment period. The study reveals that the oils are non-toxic and demonstrate significant anti-inflammatory activity. Our findings suggest that the leaf and peel oils obtained from waste parts of grapefruit plants can be useful as flavouring agents, as well as anti-inflammatory agents.  相似文献   
7.
The chemical composition of three Citrus limon oils: lemon essential oil (LEO), lemon terpenes (LT) and lemon essence (LE), and their influence in the virulence factors production and motility (swarming and swimming) of two Pseudomonas aeruginosa strains (ATCC 27853 and a multidrug-resistant HT5) were investigated. The main compound, limonene, was also tested in biological assays. Eighty-four compounds, accounting for a relative peak area of 99.23%, 98.58% and 99.64%, were identified by GC/MS. Limonene (59–60%), γ-terpinene (10–11%) and β-pinene (7–15%) were the main compounds. All lemon oils inhibited specific biofilm production and bacterial metabolic activities into biofilm in a dose-dependent manner (20–65%, in the range of 0.1–4 mg mL−1) of both strains. Besides, all samples inhibited about 50% of the elastase activity at 0.1 mg mL−1. Pyocyanin biosynthesis decreases until 64% (0.1–4 mg mL−1) for both strains. Swarming motility of P. aeruginosa ATCC 27853 was completely inhibited by 2 mg mL−1 of lemon oils. Furthermore, a decrease (29–55%, 0.1–4 mg mL−1) in the synthesis of Quorum sensing (QS) signals was observed. The oils showed higher biological activities than limonene. Hence, their ability to control the biofilm of P. aeruginosa and reduce the production of virulence factors regulated by QS makes lemon oils good candidates to be applied as preservatives in the food processing industry.  相似文献   
8.
采用L-半胱氨酸经一步湿化学法合成了稳定的铜纳米簇(CuCNs),优化了其制备条件,分别运用XPS和FTIR对其性能进行表征。CuCNs的荧光能被柠檬黄(LY)淬灭,推测其机理主要来自内滤效应。基于此,该荧光探针能选择检测LY,线性范围和检出限分别为3.33~60.0μmol/L和1.90μmol/L。该方法用于矿泉水和饮料中LY检测,回收率为95.5%~104.4%。  相似文献   
9.
阿维菌素在柑桔和土壤中的消解动态研究   总被引:1,自引:0,他引:1  
利用高效液相色谱法,建立了阿维菌素在柑桔和土壤中的残留分析方法.研究了阿维菌素在柑桔和土壤中的残留消解动态,对影响残留分析方法的主要参数进行了优化.柑桔和土壤样品分别用乙腈和二氯甲烷提取,弗罗里硅土柱净化,高效液相色谱仪可变波长紫外检测器检测,外标法定量.结果表明,该方法在柑桔和土壤中的最低检测浓度均为0.01 mg/...  相似文献   
10.
We have developed a fast ultra HPLC with ion‐trap TOF‐MS method for the analysis of flavonoids in Citrus bergamia juice. With respect to the typical methods for the analysis of these matrices based on conventional HPLC techniques, a tenfold faster separation was attained. The use of a core–shell particle column ensured high resolution within the fast analysis time of only 5 min. Unambiguous determination of flavonoid identity was obtained by the employment of a hybrid ion‐trap TOF mass spectrometer with high mass accuracy (average error 1.69 ppm). The system showed good retention time and peak area repeatability, with maximum RSD% values of 0.36 and 3.86, respectively, as well as good linearity (R2 ≥ 0.99). Our results show that ultra HPLC can be a useful tool for ultra fast qualitative/quantitative analysis of flavonoid compounds in citrus fruit juices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号